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Abstract
Spatial interactions between herbivores and vegetation resources drive plant and animal dynamics and ecosystem

functioning. Energy maximization is often proposed as an important factor determining diet selection, however, few studies

have made the link between different energy-maximizing strategies and emergent properties, such as the spatial pattern of

defoliation. Using an individual-based model, we investigate the role of several hypothetical perceptual traits in the formation of

defoliation patterns and the consequences for the foraging performance of the animals. Results suggest that in complex mosaics

of poor quality vegetation, highly perceptual strategies are not necessarily an advantage, however, perceptual traits can have a

strong impact on the spatial pattern of defoliation.
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1. Introduction

1.1. Emergent properties and individual-based

modelling

The hierarchical foraging theory (Senft et al.,

1987) predicts that the intensity of plant–herbivore
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interactions decrease with increasing spatial scale, as

foraging decisions become increasingly biased

towards non-foraging tradeoffs (e.g. shelter). At

the same time, Illius and Gordon (1993) argue that

due to the interaction between feeding allometry and

perceptual abilities, herbivores have evolved fora-

ging strategies that simultaneously pursue foraging

efficiency and information gathering. As a result of

the low contrast in vegetation quality, herbivores are

expected to risk small scale inefficiency in order to

improve longer term foraging efficiency, thus

suggesting that foraging strategies operate at inter-

mediate scales (Illius and Gordon, 1993). Senft et al.

(1987) argue that insight into the decision-making
d.



S.P. Oom et al. / Ecological Complexity 1 (2004) 299–327300
mechanisms is required to understand herbivore

foraging strategies, thus stressing the role of

individuals in the formation of foraging patterns.

Cognition, i.e. how animals transform information

into perception, is expected to play an important role

in foraging behaviour (Bell, 1991; Bailey et al.,

1996; Illius and Gordon, 1993). Here, we consider

how the pre-ingestion information (Illius and

Gordon, 1993) used by herbivores to evaluate the

availability of forage in their environment affects the

pattern of distribution of defoliation across a

vegetation mosaic.

The distribution of defoliation by a population of

grazing herbivores across a vegetation mosaic can be

seen as an emerging property (Kawata and Toque-

naga, 1994) resulting from the interactions between

vegetation pattern and individual foraging decisions.

A large number of local foraging decisions (entities

at lower level), made by individuals in a population,

can accumulate to an emerging global pattern of

defoliation (emergent property). While a population-

based model can be used to investigate the best

possible distribution of foragers across a vegetation

mosaic, an individual-based model is required to

ask what defoliation patterns result from specific

individual-based foraging strategies (Grunbaum,

1998).

Experimental progress on spatial predator–prey

interactions has been slow due to the complexity and

resource demands of hypothesis-testing experiments

(Dunning et al., 1995; Kareiva, 1989). Therefore, it is

recognized that models can facilitate the investigation

of hypotheses at a range of spatial and temporal scales

(Dunning et al., 1995; Pyke, 1983). Although a large

body of work is focussed on models, which assume

omniscient consumers with unlimited access to

resources (a.o. Lessells, 1995; Krivan, 2003), we

have limited our review to models that explicitly

model space. Although, a range of models consider

spatial aspects of foraging herbivores (e.g. Gross et al.,

1995; Gardner et al., 1989; Jeltsch et al., 1997; Hyman

et al., 1991; Bernstein et al., 1988; Roese et al., 1991),

two explicitly model the role of foraging behaviour

and particularly the role of perception in foraging

decisions (Moen et al., 1997; Turner et al., 1994).

These conceptual models investigate the performance

of animals, using alternative foraging strategies in

complex heterogeneous landscapes.
The EASE model (Moen et al., 1997) considers

the foraging behaviour of moose (Alces alces); the

model is spatially explicit only at the scale of

neighbouring cells. The foraging strategies in EASE

are a combination of stopping and movement rules,

determining how much animals eat in the current

patch and when they leave. For example, with the

‘Fixed stopping rule’ the animals eat 33% of the

current browse in the feeding station and then move

to a new feeding station. When deciding where to go,

the animals only consider their neighbouring feeding

stations and thus do not use information about the

environment at a larger scale. The model focuses on

energy budgets, ignoring the spatial distribution of

defoliation. Cognitive foraging strategies, i.e. where

movement is biased towards better browse, per-

formed better than non-cognitive foraging strategies.

The differences between strategies increased with

decreasing browse density, in line with theoretical

predictions (e.g. Stephens and Krebs, 1986).

The model by Turner et al. (1994), developed to

simulate the grazing system of northern Yellowstone

Park, uses multiple-scale foraging rules. Apart from a

random, one-step rule, the animals can either select the

nearest resource site, or select the best direction of

movement based on knowledge of the environment.

Animals can move multiple cells in one time step. The

search radius of the animal is set to the maximum

moving distance per day. Again strategies are most

divergent in their effects at low resource density.

Variability of forage intake increases with increased

resource heterogeneity. Turner et al. (1994) also do not

consider the spatial pattern of defoliation resulting

from the different foraging strategies.

1.2. Observed emergent patterns of defoliation

In this paper, we investigate the spatial plant–

herbivore interactions in a grazed moorland ecosys-

tem in the Scottish Highlands, UK. Patchy distribu-

tions of animals across these heather (Calluna

vulgaris (L.) Hull) – grass mosaics were described

as early as the 1960s (Hunter, 1962; Job and Taylor,

1978). A series of experiments in the 1990s (Clarke

et al., 1995a; Cuartas et al., 2000; Hester et al., 1999)

showed that sheep (Ovies aries) and red deer (Cervus

elaphus L.) exhibit a strong preference for grass,

resulting in a large proportion of grass in the diet
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despite relatively low abundance of grass in the

mosaics. Heather defoliation was strongly spatially

correlated with the availability of grass, such that the

heather defoliation decreased rapidly with distance

from the grass-heather edge (Clarke et al., 1995b;

Hester and Baillie, 1998) and heather defoliation

increased with the total area of grass in the local

(25 m) vicinity (Oom et al., 2002). These results

show that only a small proportion of the heather in

the mosaic is intensively used and that the use

concentrates on heather spatially associated with

high grass abundance.

1.3. Investigating emergent patterns through field

and virtual experimentation

A field experiment was carried out, to increase

our understanding of emergent patterns of heather

defoliation (Oom et al., 2002). Although, the

experiment provided quantitative information on the

pattern of heather defoliation, it did not provide insight

into the role of foraging behaviour in the formation

of the pattern of heather defoliation. To address this

issue, we have investigated the effect of foraging

behaviour, using an individual-based herbivore fora-

ging simulator. A series of virtual experiments

considered the effect of different perceptual para-

meters, which formed the foraging strategies used by

herbivores grazing on an artificial vegetation mosaic.

The experiments were executed using an extended

version of the HOOFS model (Beecham and Farns-

worth, 1998). Parameterizations were based on the

grazed ecosystem found in the Highlands of Scotland,

considering a herbivore, such as sheep or red deer,

foraging on heather-grass mosaics.

The model output contains many variables, which

could be described as emergent properties, including:

energy intake rate of the herbivores, time spent

grazing and diet composition. These properties

provide insight into the effect of perceptual ability

on the foraging success of the animals. However, the

emergent properties shared by both the experimental

observations and the model simulations, were the

spatial pattern and severity of heather defoliation. In

order to facilitate comparison between observed and

simulated results, these properties were quantified,

using the semi-variogram and the frequency distribu-

tion of the heather defoliation.
2. Methods

2.1. The HOOFS model

The HOOFS (Hierarchical Object Oriented Fora-

ging Simulator) model is a spatially explicit, individual-

based model. The model used in the study is an

extended version of the model used in previous studies

(Beecham and Farnsworth, 1998; Beecham et al., 1999;

Farnsworth and Beecham, 1999; Beecham and Farns-

worth, 1999; Beecham, 2001). Individual herbivores

can have different states and different responses to their

environment but in contrast to previous studies

(Beecham and Farnsworth, 1999, 1998), individuals

interact only indirectly through competition for the

vegetation. Parameters for the foraging strategies were

all part of the foraging sub-model. A detailed des-

cription of the extended foraging sub-model is given in

Appendix A. The HOOFS model uses a spatial

hierarchy based on a hexagonal grid. Each individual

cell, the lowest level in the hierarchy, is a member of a

super-cell, consisting of the central cell and its six

neighbours. In turn, these first-order super-cells are

grouped in second-order super-cells and so on (Fig. 1).

Several parameters in the foraging sub-model make use

of this spatial hierarchy (Tables A.1 and A.2).

The initial biomass (dry matter) in heather cells

was considered representative of the total amount of

current year’s production, but grass was allowed to

grow during the simulation. The grass production was

determined by the ‘Birch equation’ (Birch, 1999). The

Birch equation does not have an integrated form,

therefore, in HOOFS the new biomass is estimated,

using the ‘mid-point method’ (Birch, 1999). Para-

meter values are given in Table A.1. Foraging by the

animals resulted in depletion of the partial biomass

during the simulation. Depletion in each cell depends

on the balance between growth and offtake rates.

2.2. Field experiment

Heather defoliation distributions were observed on

six, 1 ha plots during a three-year grazing experiment at

the Macaulay Institute Glensaugh Research Station.

The fenced plots enclosed part of the existing vegeta-

tion pattern that had resulted from open hill sheep and

cattle grazing. These plots were previously used for a

series of experiments, using sheep, deer and cattle
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Fig. 1. Arrangement of the first three levels in the hexagonal

hierarchy used in HOOFS.
(Hester and Baillie, 1998). Detailed descriptions of the

vegetation map and the remote sensing procedures are

given by Oom et al. (2002) and Oom (2003). Grazing

treatments, with intensities of 4, 3 and 2 sheep ha�1,

were assigned randomly with two replicates to the six

plots. The present paper is based on just one of these

plots receiving 2 sheep ha�1. Heather defoliation was

observed at fixed locations along transects spread

across the vegetation mosaics. Transects were perpen-

dicular to the grass-heather edge (Oom et al., 2002).

2.3. Vegetation map

The effects of the foraging algorithm in HOOFS

(see Appendix A) are dictated by an underlying vege-

tation map. The spatial patterns of defoliation are the

result of the interaction between the specific foraging

behaviour characteristics and the characteristics of

the vegetation. Although, technically possible, due to

computational constraints it was not feasible in this

study to vary both the foraging behaviour and the

vegetation pattern. Therefore, we have chosen to give

priority to the different foraging strategies applied to a

single vegetation map.

In order to test the foraging strategies in a realistic

vegetation mosaic (Fig. 2), we have used the heather-

grass mosaic from a 2 sheep ha�1 plot of the heather
defoliation experiment (Oom, 2003; Oom et al., 2002).

The plot contained a large number of small and medium

sized grass patches in a heather matrix, with local

clustering of patches and isolated patches elsewhere

in the mosaic. Grass patches were connected by an

extensive network of paths.

The vegetation map was derived from aerial

photographs (Oom et al., 2002). Paths were not

detectable from the aerial photographs and were,

therefore, surveyed separately in the field and added to

the vegetation map. The width of the paths was adjusted

to give continuous paths on the hexagonal map of at

least one hexagon width. The model used a six level

hierarchical hexagonal grid, providing 117,649 cells.

The vegetation map was sampled with this hexagonal

grid such that each hexagonal cell was allocated the

vegetation type present in the centre of the hexagon,

while maximizing the number of hexagonal cells

occupied by the vegetation map. Due to the rectangular

shape of the vegetation map, 65,511 cells were covered

by the vegetation map. The remaining cells ‘inacces-

sible’ and were not used during the simulations. The

resulting hexagonal vegetation map gave a distance of

0.43 m between neighbouring hexagonal cells and a

cell area of 0.14 m2. The cells in the hexagonal

vegetation map (Fig. 2) were 11% grass patches, 5%

grass paths and 84% heather.

Initial values of biomass for each vegetation type

were based on Birch et al. (2000). In case of heather,

only the current year’s growth was considered in the

model and all current year’s growth was available at the

start of the simulation. The growth rate of heather was

negligible, while grass was allowed to grow during the

simulation (Table A.1). Thus, the initial available

biomass (g dry matter) of cells was set to 100 g for grass

cells (patches and paths) and 500 g (current year’s

growth) for heather cells (Table 1). As a result 3.5% of

the available biomass is grass and 96.5% is heather. The

total available dry matter of the whole vegetation

mosaic at the start of the simulation was 28.7 tonnes in a

vegetation mosaic of one hectare (Table 1). The total

production of the vegetation during the simulation

depended on the foraging pattern.

2.4. Input parameters and output variables

The foraging sub-model is a conceptual model of

animal foraging behaviour. Although, it is known that
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Table A.1

Input parameter values used by the HOOFS model

Description Symbol Unit Dim.a Range Value(s)

Input

Population size N – ani 1–1 10

Initial energy Einit J ani 0–1 5000

Directional persistence (foraging) qf hier 0–�1 1, 1, 0.5, 0.2, 0.5, 1

Directional persistence (walking) qw – hier 0–1 1, 1, 0.2, 0.2, 0.2, 1

Allow turn et – ani 0–1 1

Mode error ew – ani 0–1 0.8–1.2

Determinism b – ani 0–1 2

Distance sensitivity pd – hier 0–1 0.5

Distance exponent m – ani 0–�1 �0.25

Discriminative ability g – ani 0–1 3, 2, 1, 1, 1

Step cost Tstep s ani 0–1 0.05

Relative resistance R – veg 0–1 1, 1, 5

Resistance sensitivity pr – ani 0–1 0.02

Inaccessible biomass Binacc g DMb veg 0–1 50, 50, 50

Intake rate rveg g DM s�1 veg 0–1 30, 30, 10

Handling cost Thandling s veg 0–1 0.5, 0.5, 0.5

Biomass fraction Fbiomass – veg 0–1 0.3, 0.3, 0.1

Maximum digestibility Dmin J g DM�1 veg 0–1 0.7, 0.7, 0.5

Minimum digestibility Dmax J g DM�1 veg 0–1 1.0, 1.0, 0.6

Digestibility recovery delay Tdelay s veg 0–1 500, 500, 500

Speed of digestibility recovery Dslope s�1 veg 0–1 0.001, 0.001, 0.001

Maintenance energy rate Imaint J s�1 ani 0–1 1

Runtime

Potential energy intake rate I J s�1 cell 0–1
Grazing cost Tgrazing s cell 0–1
Travel cost Ttravel s cell 0–1
Eating cost Teating s cell 0–1
Biomass eaten Beaten g DM cell 0–1
Mean resistance Rmean – ani 0–1
Maintenance energy Emaint J ani 0–1

Vegetation parameters

Maximum above ground SBc K g DM m�2 veg 0–1 150, 120, 525

Maximum growth rate a g DM m�2 s�1 veg 0–1 0.0013, 0.0001, 0.0001

SB for maximum growth rate c g DM m�2 veg 0–1 6, 6, 3

Runtime

Standing biomass B DM cell 0–1
Time since defoliation Tdef s cell 0–1

A set of values is needed when the parameter refers to a level in the hierarchical hexagonal grid or to the three vegetation types.
a Dimensions of parameter: hier = six levels of hexagonal hierarchy; veg = number of vegetation types (respectively: grass patch, grass path,

heather); ani = number of animal species (one in this case); cell = 117,649 (number of cells in a six level hierarchical hexagonal grid).
b DM = Dry matter content.
c SB = Standing biomass.
animals have knowledge of their environment and that

some of this knowledge is used in foraging decisions,

it is unclear how these perceptual processes work (see

reviews Bailey et al., 1996; Bell, 1991). The foraging

sub-model is thus, an attempt to investigate possible
interactions between perceptual abilities and resource

heterogeneity.

To allow the animals to scan and sample the

vegetation mosaic efficiently, both a foraging and a

walking mode are considered. The foraging mode can
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Table A.2

Output parameters of the HOOFS model. For explanation of dimen-

sions see Table A.1

Description Unit Dimension

Animal parameters

Energy efficiency % ani

Energy intake rate J s�1 ani

Net energy intake rate J s�1 ani

Movement step ani

Grazing time s ani

Residence time s ani

Biomass intake g DM s�1a ani

Digestibility J g�1 ani

Heather proportion % ani

Grazed area proportion (GAP) % veg

Adjusted grazed area proportion % veg

Vegetation parameters

Standing biomass g DM cell

a DM = Dry matter content.
include movement and subsequent eating, while the

walking mode exclusively involves walking. Depend-

ing on the foraging strategy and the quality of

resources in the vicinity, animals can choose to either

walk or forage. A foraging bout is defined as a

continuous period spent in foraging mode. These

modes are supported by data on rates of movement of

sheep in heather-grass mosaics (Hester et al., 1999).

2.5. Virtual experiments

To investigate the effects of parameters on model

output and interactions between parameters, virtual

experiments were executed. The following five

parameters from the foraging sub-model were used

as treatments in three virtual experiments (Table 3):

determinism, distance exponent, relative resistance

(Table 4), discriminative ability (Table 5) and distance
Table 1

Number of cells and the total biomass in the vegetation mosaic at the

start of the simulation

Vegetation Cells (%) Biomass

% 106 g DM

Grass patches 11 2.4 0.7

Grass paths 5 1.1 0.3

Heather 84 96.5 27.7

Total 100 100 28.7
sensitivity (see Table 2 for a description of these

parameters).

Each experiment considered three parameters and

each parameter was applied at three levels, leading to a

3x3 factorial design. The other parameters of the

foraging sub-model were held constant throughout the

three experiments and are summarized in Table A.1.

Each combination of parameter values is consid-

ered to be a unique foraging strategy. Because,

HOOFS is a stochastic model, the replication of runs

for each strategy was considered appropriate.

Although, the animals started in random locations

within the landscape at the start of each replicate run,

there movement would be directed to the most

attractive parts of the landscape. Thus, replicate runs

quickly converged towards a similar foraging pattern.

This shows, how strongly the landscape dictates the

decisions by the herbivores. As a result, variation in

the output variables of replicate runs was low, as

indicated by the strong treatment effects and replica-

tion was limited to five runs.

The performance of the foraging strategies in the

virtual experiments are compared against a non-

cognitive strategy with the walking mode switched off

(Table 6). A non-cognitive strategy, is achieved by

setting the determinism to zero, i.e. the animals take

random decisions. The walking mode in the model is

not directly influenced by the lack of determinism.

The results for the non-cognitive strategy with

walking mode are also given (Table 6). When animals

are able to walk as an alternative to foraging, they will

walk longer distances and visit more cells. The

walking mode is affected by the cost of alternative

routes and therefore, leads to a bias towards low

resistance. This results in an increased use of paths

and patches. Because, walking animals endure travel

costs while not taking in biomass, their net energy

intake rate will be lower compared to the animals that

only forage.

2.6. Statistical analysis

For each experiment, output variables were

averaged across the duration of the simulation run.

These average values were then used for analysis in an

ANOVA. We deliberately choose the ANOVA, as it is

a widely applied statistical tool. Simulations were run

for all combinations within a set of parameter values.
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Fig. 2. Vegetation map of the experimental plot on Strathfinella Hill used as the vegetation mosaics in the virtual experiments. The plot is 100 m

� 100 m. Green indicates grass patches and yellow indicates grass paths within a matrix of heather.
The parameter values were considered treatments

within the ANOVA, while the output parameters were

considered the observations for each combination of

treatments. The ANOVA not only provides signifi-

cance estimates for treatments, but it also provides

insights into the interactions between treatments.

Generally, P-values were less than 0.001 and were

thus not presented. Several interactions were sig-

nificant and are mentioned in the text only. The results

for the output variables are presented in polar plots. To

enable easy interpretation, simulation results are

standardized against the results from the non-

cognitive strategy without walking mode (Table 6).
The frequency distribution and semi-variogram

(hereafter called variogram) were calculated to

facilitate the comparison between observed and

simulated defoliation patterns. As the simulation

model did not include seasonality, observations of

cumulative annual grazing were considered most

comparable to the simulated defoliation. This was

equivalent to the April observations in the field

experiment (Oom et al., 2002), covering the whole

growing season of heather. Data were averaged by

transect (with fixed distances from the grass-heather

edge) or location (consisting of an uphill and downhill

transect). Only heather defoliation was observed
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Table 2

Description of HOOFS input parameters and output variables

Input parameters

Determinism The foraging strategy of the animals is driven by the quality of the vegetation in the vegetation mosaic.

How biased animals are towards the best quality vegetation is set by their determinism. When the determinism

is zero, the animals forage at random. Animals that are fully deterministic feed only on the best available

vegetation and have a determinism of infinity.

Distance exponent The distance exponent determines what part of the landscape the animals take into account when taking

decisions. The distance exponent is similar to the reactive distance as defined by Bell (1991). The distance

exponent describes a relationship between the weighting of cell quality versus distance. A distance exponent

of zero means that all distances are weighted equal, while a distance exponentbetween 0 and �1 leads to a

lower weighting for distant cells, i.e. a bias towards cells nearby. Using an intermediate distance exponent

still allows very high quality cells in the distance to influence animal decisions when the cells in their

vicinity are of low quality.

Discriminative ability The decisions of an animal foraging in HOOFS are, among others, affected by the availability of high quality

food resources in their environment. The way the animal perceives its environment will strongly influence its

decision making. The distance exponent determines how the animal weighs resources near and further away.

But when evaluating the food resources, the animal is unlikely to perceive near and distant resources with the

same resolution. To accommodate this, HOOFS summaries the resource environment by calculating mean

quality of food resources at each super-cell level of the hexagonal grid. The discriminative ability determines

how the mean resource quality is calculated at each level using the individual cells within it. Either the mean

is calculated equally across all cells (discriminative ability = 1), or the mean is biased towards the higher

quality cells among the group of cells (discriminative ability > 1). In ecological terms that means that with a

high discriminative ability, animals will perceive small high quality resource cells in the distance even when

these cells are surrounded by poor quality cells. The discriminative ability can be set for each level in

the hierarchy separately.

Relative resistance The relative resistance determines the resistance when travelling from one cell to another and affects the step

cost. An indication for different perceptions of ‘resistance’ is shown by Hester et al. (1999) as deer cross

grass-heather boundaries more often than do sheep. The resistance encountered when moving from one cell to

its neighbour, is calculated as the average relative resistance of the vegetation types in both cells. For example,

if the relative resistance of grass and heather are one and five respectively, then going from a grass cell to

a heather cell will give a resistance of three. Going from grass to grass or heather to heather will result in

a resistance of one and five respectively.

Distance sensitivity The distance sensitivity determines the willingness of animals to walk long distances when local resources are

of low value compared to resources in the distance. A low distance sensitivity facilitates the exploration of

isolated patches of high quality resource, while at high distance sensitivity animals tend to forage locally.

Output variables

Time HOOFS does not presume any time unit. Instead the time unit is determined by the units used in rate variables,

such as the intake rate. Time is expressed as simulation time. All rates are expressed per second, thus

simulation time is expressed in the same units.

Standing biomass The vegetation quantity is expressed as the amount of standing biomass (dry matter) per cell at the end

of the simulation.

Energy intake rate The energy intake rate is expressed as the average energy intake rate in Joule per animal per second.

Net energy intake rate The net energy intake rate is the difference between the energy intake rate and the energy cost rate endured

during foraging, such as movement cost and vegetation resistance.

Energy efficiency The energy efficiency is the proportion of net energy intake rate in the total energy intake rate.

Movement The movement is expressed as the average number of steps taken per foraging bout. Moving from one cell to

any of its neighbours is considered one step. Continuous grazing in one cell or its neighbour gives a movement

of one. Walking several steps before grazing will give a movement value greater than one. As a result of the

scaling of the vegetation map, one step is equivalent to 0.43 m in the vegetation mosaic.
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Table 2 (Continued )

Output variables

Residence time The time animals spend grazing in a particular cell for a single foraging bout, averaged across the landscape.

Grazing time The grazing time is expressed as the proportion of simulated time spent grazing.

Biomass intake The average dry matter intake per second across all animals.

Digestibility The average digestibility of the biomass consumed by all animals during the simulation.

Heather proportion The diet composition is expressed as the proportion of dry matter of heather in the diet.

GAPa The proportion of cells of a vegetation type grazed, calculated for the whole mosaic (total) and for each

vegetation type (grass patch, path, heather).

Adjusted GAP The proportion of cells of a vegetation type grazed relative to the proportion of the vegetation type in the

mosaic. For example, the adjusted grazed area proportion for grass is calculated as the proportion of grazed

grass cells in the total number of grazed cells in the landscape, divided by the proportion of grass in the

mosaic. This gives an indication of the proportion of a vegetation type affected relative to the impact on the

whole landscape. When the impact on a vegetation type is close to, or the same as, the impact on the whole

landscape, the adjusted grazed area proportion will tend to 100%.

a Grazed area proportion.

Table 3

Overview of the three experiments

Parameter Experiment 1 Experiment 2 Experiment 3

Determinism [1, 2, 3] [1, 2, 3] [1, 2, 3]

Distance exponent [�0.75, �0.50, �0.25] [�0.75, �0.50, �0.25] [�0.75, �0.50, �0.25]

Relative resistance [Low, Medium, High] Low Low

Discriminative ability Medium [Low, Medium, High] Medium

Distance sensitivity 0.5 0.5 [0.3, 0.5, 0.7]

Each experiment applies three values for each of three input parameters, considered within the experiment, in a factorial design with five

replicates. See Tables 4 and 5 for explanations of values for relative resistance and discriminative ability, respectively.
during the field experiment, while both heather and

grass defoliation are simulated in the model. To enable

quantitative comparison, only the simulated heather

defoliation was considered in the statistical analysis.

In order to evaluate the effect of foraging behaviour

on the spatial pattern of defoliation, a variogram was

chosen because it provides a good method of des-

cribing spatial continuity of complex spatial patterns
Table 4

The three parameter values for relative resistance, providing a

relative resistance for each vegetation type

Treatment Vegetation type

Grass Path Heather

Low 1 1 1

Medium 1 1 5

High 1 1 10
(Isaaks and Srivastava, 1989). The variogram has its

origin in mining, but is slowly being adopted by

environmental scientists (Legendre and Fortin, 1989;

Legendre and Legendre, 1998; Webster and Oliver,

2001; Goovaerts, 1997; Cressie, 1993).

The model variogram is a function fitted to the

sample variogram to provide estimates for the nugget,

sill and range (Isaaks and Srivastava, 1989). The
Table 5

The three parameter values for discriminative ability, providing a

discriminative ability for each level in the hexagonal hierarchy,

where level one is the current cell the animal is in

Treatment Level in hierarchy

2 3 4 5 6

Low 1 1 1 1 1

Medium 3 3 2 1 1

High 5 5 3 2 1
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Table 6

Treatment effects for the two non-cognitive strategies either includ-

ing both walking and foraging modes, or limited to foraging only

Variable Foraging only Walking and

foraging

Mean S.D.a Mean S.D.

Energy efficiency 98.3 0.02 92.6 0.22

Energy intake rate 5.20 0.05 4.93 0.07

Net energy intake rate 5.11 0.05 4.56 0.08

Movement 1.00 0.00 5.34 0.13

Grazing time 91.1 0.1 63.4 0.7

Residence time 3.71 0.06 2.71 0.04

Biomass intake 8.26 0.04 6.64 0.08

Digestibility 62.9 0.32 74.2 0.21

Heather proportion 69.0 2.6 63.4 1.7

Frequency b 0.11 0.01 0.28 0.03

Frequency c 1.99 0.09 2.78 0.25

Range 10.2 4.6 12.7 5.5

Sill (� 10�5) 0.73 0.05 0.22 0.03

Partial sill (� 10�5) 0.47 0.05 0.10 0.03

Nugget (� 10�5) 0.26 0.09 0.13 0.01

RNE 35.1 10.4 58.0 7.7

GAPb total 29.2 0.7 35.1 1.4

GAP patch 31.1 3.5 76.8 6.4

Adjusted GAP patch 106.6 11.5 218.6 14.3

GAP Path 31.4 1.7 74.0 3.1

Adjusted GAP Path 107.7 7.6 210.8 2.9

GAP Heather 28.8 0.9 27.7 1.2

Adjusted GAP heather 98.8 1.5 79.0 1.8

The determinism is set to zero for both strategies.
a Standard deviation.
b Grazed area proportion.
sample variogram was calculated and the model

variogram was fitted using the GenStat procedures

Fvariogram and Mvariogram, respectively (Lawes

Agricultural Trust; 5th Edition Release 4.22, Service

Pack 2, GenStat Procedure Library Release PL13).

The sample variogram for the heather defoliation was

calculated using a maximum lag distance of 50 m and

a lag size of 5 m. The effect of lag size was tested, but

there was no significant effect on the model variogram.

Directional sample variograms (Isaaks and Srivastava,

1989) were calculated for 308 sectors centred on the

map’s east axis: 08, 308, 608 and 908. A single model

variogram was then fitted to all four directional sample

variograms. Several model variograms were fitted to

the sample variograms, but the exponential model

variogram (Isaaks and Srivastava, 1989) consistently

showed the best fit and is the one used here. This is in

line with the suggestion by Webster and Oliver (1990),
that the exponential model variogram is expected to be

most appropriate for many ecological processes.

Because, the exponential model variogram

approaches the sill (general or maximum variance)

asymptotically, the range (distance at which max-

imum variance is observed) cannot be determined as

the distance at which the sill is reached. For

exponential models, GenStat estimates the theoretical

range, which is the point at which the variogram

reaches 95% of its sill (Webster and Oliver, 2001). The

model variogram also provides estimates of the nugget

(spatially uncorrelated component of the variance plus

that which is spatially correlated below the level of the

minimum step (lag) size) and the partial sill (the

spatially correlated component of the variance). The

relative nugget effect (RNE) (Legendre and Legendre,

1998) was calculated as the contribution (expressed as

percentage) of the nugget to the sill, the latter being

the sum of the nugget and the partial sill.

The variograms of the simulated heather defolia-

tion are based on average consumption per time step,

while observed heather defoliation is based on

percentage defoliation per year. Thus, the values of

the sill and nugget for simulated and observed heather

defoliation are not directly comparable. However, the

range is calculated in metres for both the simulated

and observed variograms, while the RNE is dimen-

sionless.

In order to compare the frequency distributions of

observed and simulated heather defoliation, a prob-

ability distribution function was fitted to the frequency

histograms of percent heather defoliation. To facilitate

curve fitting, only observation with percentage heather

defoliation greater than zero were considered. A

gamma function generally provided the best fit for

both the observed and simulated histograms. The

gamma function (Eq. (1)) provides two variables

describing the scale (b) and the shape (c) of the fitted

curve (Hastings and Peacock, 1974). The scale

variable b determines how stretched the distribution

is along the x-axis. Increasing b leads to an increase in

the mean and the variance. The shape variable c

determines the shape of the distribution and effects

both the kurtosis (the peakedness of the distribution)

and skewness (Hastings and Peacock, 1974; Sokal and

Rohlf, 1995). Skewness decreases exponentially and

kurtosis decreases linearly with increasing c. For b = 1

and c tending to infinity, the f(x) distribution tends to a
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standard normal distribution (Hastings and Peacock,

1974). The gamma functions were fitted using the

Distribution procedure in GenStat (Lawes Agricul-

tural Trust; 5th Edition Release 4.22, Service Pack 2,

GenStat Procedure Library Release PL13). Note

that the equation shown here is the one, used by

GenStat.

f ðxÞ ¼ bcxc�1 e�bx

G ðcÞ (1)

3. Results

3.1. General

In order to compare the observed and simulated

heather defoliation, two emergent properties were

quantified. The first emergent property is the variogram

of the spatial pattern of heather defoliation. Fig. 3 shows

the sample variogram and the fitted model variogram

based on the observed pattern of heather defoliation.

The second emergent property is the frequency distri-

bution of the observed heather defoliation. Fig. 4 shows
Fig. 3. The sample variogram of the observed heather defoliation pattern

variograms (08, 308, 608 and 908) were calculated with a lag size of 5 m and

four directional variograms, as indicated by the line, is based on an exponen

110. The RNE is 77%.
the frequency distribution of percentage annual

defoliation of individual observations.

The individual experiments are covered in separate

sections, but some general points are covered here.

Differences between output variables for the different

treatments and different experiments are small. This is a

result of the constraints of the vegetation mosaic. As the

availability of high quality grass is limited, the long-

term results of different strategies converge. However,

instantaneous performance (performance across a small

time period) of strategies differ more strongly. Here, we

have focussed on the longer-term performance, as we

are interested in the resulting cumulative defoliation

pattern. In reality, as in the model, animals are strongly

limited by the availability of resources. Constraints in

the availability of grass and heather in the simulated

vegetation mosaic determine the diet composition, with

around 60% heather in the diet, despite high determin-

ism or perceptual abilities.

The variogram analysis generally shows a large

RNE. As stated in the methods, the nugget is assumed

to be caused by spatial variation below the smallest

spatial scale considered in the analysis, or by a

measurement or sampling error (Isaaks and Srivastava,
based on the 813 locations in the field experiment. Four directional

a maximum lag distance of 50 m. The model variogram fitted to the

tial equation resulting in a range of 11.5 m, a nugget of 84 and a sill of
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Fig. 4. Frequency distribution of observed heather defoliation for all observations in the field experiment. The frequency distribution variables b

and c are 0.078 and 1.69, respectively.
1989; Webster and Oliver, 2001). However, this is a

virtual experiment, using a computer simulation model,

so that measurement error is negligible. At the same

time, the spatial pattern of defoliation is not sampled

in the experimental sense. The spatial patterns of

defoliation based on the hexagonal grid and the sample

population are the same. This allowed us to calculate the

sample variogram for the smallest possible scale, i.e.

that of neighbouring cells. Although, we calculated the

variogram with a lag distance of 2.5 m, testing of

smaller lag sizes showed no significant effect on the

nugget. Possible explanations are mentioned in the

discussion.

Sample variograms of simulated heather defolia-

tion showed a hole effect (Isaaks and Srivastava, 1989)

in directions running across the hill contours of the

experimental site, as the sample variogram decreased

at intermediate distance after an initial peak.

This effect is most clear for the 08 variogram, which

is perpendicular to the hill contours (Fig. 5), sug-

gesting that the average spacing between paths is

around 11 m. Some directional variograms did not

reach an asymptote, but increased or decreased with

distance (Fig. 5), indicating a non-stationary mean
across scales (Isaaks and Srivastava, 1989), i.e. some

areas of the landscape were more heavily grazed than

others at the largest measured scale. Implications are

described in the discussion.

3.2. Non-cognitive strategies

Non-cognitive strategies, or non-cognitive foraging

strategies, were simulated as a baseline against which

to compare the cognitive foraging strategies. The lack

of bias towards higher food quality in this non-

cognitive strategy, means the animals eat what they

come across, regardless of the vegetation type or

quality. In foraging mode only, the animals graze a

large part of the mosaic (grazed area proportions,

GAP), while their energy intake rate is low (Table 6).

Their movement between foraging bouts is limited to

single steps to neighbouring cells, thus movement

equals one. As movement is limited, both residence

time and grazing time are high. Their diet is of poor

quality, but as the animals spend little energy on

movement, their energy efficiency is high. Notable is

the large RNE (Table 6). This illustrates that most of

the variation in the defoliation is a result of non-spatial
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Fig. 5. Example of a sample variogram of a heather defoliation pattern resulting from a model simulation run. The sample variogram was

calculated for four directions (08, 308, 608 and 908) with a lag size of 2.5 m and a maximum lag distance of 50 m.
processes. The remaining correlated variance is a

result of the fact that the animals still move from cell

to cell.

The diet emerging from the simulations, indicated

by the proportion of heather in the diet, is determined

by the intake rate of grass and heather (Table A.1),

30 g DM s�1 and 10 g DM s�1, respectively and the

encounter rate of both vegetation types. Therefore, if

animals were given equal amounts of grass and

heather, the intake rates would result in a diet of 25%

heather, but with a heather cover of 90% the ratio of

encounter rate of heather to grass is 9:1 (assuming

random encounters). This would be expected to give a
Table 7

Biomass (%), per vegetation type, available in vegetation mosaic at the sta

from the non-cognitive foraging strategies

Vegetation Biomass at start (%)

Grass patches 2.4

Grass paths 1.1

Heather 96.5

Total 100
diet of 75% heather, however, because the animals

start off on the grass (also indicated by the slightly

higher adjusted grazed area proportions for patches

and paths), the proportion of heather in the diet is 69%

(for the animals with only foraging mode). This

discrepancy would decrease with increased simulation

time. When animals have the choice of the foraging or

walking mode, the animals are still biased (due to the

relative resistance) to walk on the grass even if their

foraging mode is non-cognitive. This decreases the

proportion of heather in the diet to 63% (Table 6) and

shifts consumption to the grass patches and grass paths

(Table 7).
rt of the simulation and biomass consumed per vegetation resulting

Biomass consumed (%)

Foraging only Walking and foraging

22.5 92.8

10.9 27.3

8.3 4.6

8.6 6.9
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When the walking mode is added to the non-

cognitive foraging mode, the animals perform

significantly less well. Their energy intake rate drops

by 5%, mostly as a result of a sharp decline in biomass

intake (20%). The animals manage to partly com-

pensate by increasing the digestibility of the diet

(18%). This is because the walking mode is always

biased towards grass, leading to an increase in the

proportion of grass cells grazed (adjusted GAP patch

and path) and the subsequent grass in the diet (heather

proportion).

3.3. Alternative strategies

The effect of alternative foraging strategies were

investigated for the following variables: determinism,

distance exponent, relative resistance, discriminative

ability and distance sensitivity.

3.4. Determinism

Increased determinism leads to an increase in the

energy intake rate and a decrease in the distance

travelled during a walking bouts (movement) (Fig. 6).

At the highest determinism, the animals perform 11%

better (net energy intake rate) than the animals using a

non-cognitive strategy. The determinism reflects how

flexible animals are when selecting their food. Highly

deterministic animals will only eat from the best

quality food resource, in this case the grass and their

grazing pattern thus becomes limited to areas with lots

of grass. This is reflected in the increasing proportions

of patch and paths cells grazed (adjusted GAP patch

and path), indicating more intensive grazing on a

smaller area of the mosaic. Despite the more intense

grazing of grass areas, the pattern of heather

defoliation changes little.

Increased determinism leads to an increase in both

the frequency variables b and c. An increase of b

indicates an increase in the mean and variance of

heather defoliation, i.e. the frequency of high heather

defoliation increases, while, both skewness and

kurtosis decrease (Fig. 6). In other words, large values

of heather defoliation increase in frequency with

increased determinism. This is caused by the sharper

decrease in grazed heather cells (adjusted GAP

heather), as compared to the heather proportion in

the diet (Fig. 6).
3.5. Distance exponent

The distance exponent has an effect on the mobility

at the cost of the intake rates. At low and intermediate

distance exponent, animals manage to keep biomass

intake stable, but when the distance exponent is

highest biomass intake decreases (Fig. 7).

A strongly negative distance exponent, i.e. more

weight given to local cells, leads to a higher proportion

of the cells visited in the landscape, coinciding with a

higher biomass intake and maximum grazing time.

With a less negative distance exponent, the animals

walk more and across greater distances, thus leading

them away from poor or depleted areas. However, this

walking is at the expense of foraging, as indicated by

the decrease in biomass intake and energy efficiency.

The intermediate distance exponent performs 5%

better (net energy intake rate) than the non-cognitive

foraging strategy (Table 6).

3.6. Relative resistance

The animals’ foraging success is strongly affected

by the relative resistance of the vegetation (Fig. 8). At

low relative resistance, the animals successfully graze a

large proportion of the grass cells (Adjusted GAP patch

and path) (Fig. 9(a)). Increased relative resistance

makes walking through the mosaic (largely dominated

by heather) too costly. Animals, therefore, refrain from

walking long distances and spend more time grazing.

Despite this, foraging costs go up and energy efficiency

goes down (Fig. 8). As animals are forced to overexploit

their local environment, leading to decreased digest-

ibility, heather defoliation is spread more widely

leading to an increase in the range (Fig. 9(b)). Animals

perform 21% better than the non-cognitive strategy at

low relative resistance, but perform 11% worse at the

highest relative resistance of vegetation.

3.7. Relative resistance–distance exponent

interaction

An interaction (not presented here) occurred

between the relative resistance and the distance

exponent, such that the importance of the distance

exponent decreases with increased relative resistance.

This suggests that in a highly resistant landscape, the

performances of different strategies converge.
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Fig. 6. Polar plot of the output variables for three values of determinism, standardized against the non-cognitive foraging strategy using foraging

only (Table 6). The three values for determinism are: (circles) 1, (squares) 2 and (triangles) 3. Output variables are printed in italic if the effect of

determinism is not significant.
3.8. Discriminative ability

The discriminative ability determines whether

animals are sensitive to more distant and isolated

high quality resource cells. The discriminative ability
showed a strong effect on the range of the variogram

(Fig. 10). A low discriminative ability leads to diffuse

grazing on only part of the mosaic (Fig. 11 (a)), as

animals do not manage to distinguish good from bad.

However with improved discriminative ability, ani-
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Fig. 7. Polar plot of the output variables for three values of distance exponent, standardized against the non-cognitive foraging strategy using

foraging only (Table 6). The three values for the distance exponent are: (circles) �0.75, (squares) �0.50 and (triangles) �0.25. Output variables

are printed in italic if the effect of the distance exponent is not significant.
mals successfully explore the whole complex mosaic,

leading to a more spread pattern of grazing highly

aggregated on the network of grass patches and paths

(Fig. 11(b)). High discriminative ability enables the

animals to find resource cells more effectively, leading
to a better fit between defoliation and vegetation

pattern. The discriminative ability also has an impact

on the sill. As the range drops and the defoliation

aggregates on the grass network, the spatially

correlated variance (the sill) decreases. This is the
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Fig. 8. Polar plot of the output variables for three values of relative resistance, standardized against the non-cognitive foraging strategy using

foraging only (Table 6). The three values for the relative resistance are: (circles) low, (squares) medium and (triangles) high. Output variables are

printed in italic if the effect of the relative resistance is not significant.
result of the increasing use of a small area of the

mosaic, leading to a decrease in the small-scale

heterogeneity.

Both frequency distribution variables b and c

increase rapidly with increasing discriminative ability
(Fig. 10). This coincides with the strong decrease of

the range. As animals find their way around the

mosaic more effectively, their use of the heather

becomes more associated with the grass network. The

area of heather affected (grazed area proportion)
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Fig. 9. Defoliation pattern resulting from animals foraging with different degrees of relative resistance: (a) low relative resistance, (b) high

relative resistance. Colours indicate amount of defoliation ranging from light (yellow) to heavy (red). The black lines indicate the perimeter of

the grass network in the heather matrix. The plot is 100 m � 100 m.
decreases while the severity of defoliation per heather

cell increases, leading to an increase in the frequency

of high heather defoliation.

Because, high quality resource cells are scattered

around the environment, animals have to move further

in order to visit these cells (Fig. 10). Although, there is

a cost associated with movement, their net energy

intake remains high at low and intermediate dis-

criminative ability due to the increase in energy intake

rate. The animals can sustain their energy intake rate as

a result of the higher digestibility the animals achieve

from the resource cells visited. This coincides with a

decrease in biomass intake, as the animals spend more

time walking. At the highest discriminative ability,

there is a strongly decreased grazing time and

increased movement over longer distances. The

biomass intake thus collapses, resulting in a very

poor energy efficiency. The animals endure a 7% dec-

rease in energy intake rate at the highest discriminative

ability compared the non-cognitive foraging strategy.

3.9. Interaction between determinism and

discriminative ability

The interaction (not presented here) shows that

high discriminative ability works well with high
determinism. The decrease in energy intake at the

highest discriminative ability (as described above),

does not occur at high determinism, mainly because

the biomass intake does not decline as strongly

(Fig. 10). Instead the animals manage to sustain a 2%

increase in energy intake.

3.10. Distance sensitivity

Increasing distance sensitivity, reducing the attrac-

tion of remote high quality patches, leads to a strong

decrease in the average distance walked and an

increase in grazing and residence time (Fig. 12). While

animals manage to explore a large part of the mosaic at

the low distance sensitivity matching the defoliation

pattern to the grass pattern (Fig. 13(a)), the high

distance sensitivity hampers the perception of quality,

leading to a widespread, poorly matched, pattern of

grazing (Fig. 13(b)). Increased distance sensitivity

thus leads to a decrease in the correlation between the

grazing and vegetation pattern.

Increasing distance sensitivity leads to an increase

in the range and an increase in the sill. As animals

increasingly make their decisions dependent on local

information, their foraging of the heather becomes less

directed and thus more widely spread, leading to
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Fig. 10. Polar plot of the output variables for three values of discriminative ability, standardized against the non-cognitive foraging strategy

using foraging only (Table 6). The three values for the discriminative ability are: (circles) low, (squares) medium and (triangles) high. Output

variables are printed in italic if the effect of the discriminative ability is not significant.
increased small scale heterogeneity. Both frequency

distribution variables decrease rapidly with increased

distance sensitivity (Fig. 12). As foraging is increas-

ingly disassociated from the vegetation pattern, more
heather cells are visited with decreasing heather

defoliation per cell.

The heather proportion is constant for the three

values of distance sensitivity, despite the strong
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Fig. 11. Defoliation map resulting from animals foraging with different degrees of discriminative ability: (a) low discriminative ability, (b) high

discriminative ability. Colours indicate amount of defoliation ranging from light (yellow) to heavy (red). The black lines indicate the perimeter of

the grass network in the heather matrix. The plot is 100 m � 100 m.
decrease in grazed area proportion of grass patches

(Fig. 12). This implies that the grass cells that do get

visited will endure a much greater defoliation. As the

decrease in digestibility is compensated by an increase

in biomass intake, the net energy intake rate remains

constant, thus increasing distance sensitivity has no

effect on performance (net energy intake rate)

compared to the non-cognitive foraging strategy.
4. Discussion

The results show a strong interaction between the

effects of foraging strategies on the performance of the

animals and the emergent pattern of vegetation

defoliation. Generally, strategies, which led to a large

proportion of the mosaic being visited by the animals

increased their performance. However, a cost is

involved in this exploration and strategies which

over-stimulated mobility led to a decrease in net

energy intake rate. This suggests that high perceptual

ability is not necessarily an advantage in complex,

generally poor quality, vegetation mosaics.

The pattern of vegetation defoliation was strongly

affected by the scale of foraging and the mobility of

the animals. An increased scale of foraging, i.e. when
animals have knowledge about more distant cells, led

to an increased correlation between the pattern of

vegetation and the pattern of defoliation. Although,

the overall area grazed remained constant, grazing

shifted from a locally dispersed pattern to a globally

converged pattern, such that at a large foraging scales,

the majority of the defoliation occurred on the grass

patches and paths. Higher mobility led to an increase

in the small scale, local, heterogeneity. As mobility

decreases, grazing becomes increasingly spatially

limited, leading to increased pressure on a small area,

thus decreasing the variation in defoliation between

cells in the grazed area.

Different foraging strategies and resulting defolia-

tion patterns had little influence on the proportion of

heather in the diet, suggesting that diet is predomi-

nantly determined by the availability and accessibility

of the resources. This is in line with observations on

the same plots by Cuartas et al. (2000), which show

that the proportion of heather in the diet of sheep and

deer was affected by the availability of grass, with the

proportion of heather increasing with decreasing

availability of grass. Additional experiments showed

that the proportion of heather in the diet of sheep

increased with increasing fragmentation of the grass

in the heather matrix, suggesting that the sheep
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Fig. 12. Polar plot of the output variables for three values of distance sensitivity, standardized against the non-cognitive foraging strategy using

foraging only (Table 6). The three values for the distance sensitivity are: (circle) 0.3, (square) 0.5 and (triangle) 0.7. Output variables are printed

in italic if the effect of the distance sensitivity is not significant.
became increasingly encounter limited (Cuartas et al.,

2000).

One aim of these experiments was to investigate

foraging strategies, based on several perceptual

parameters that could explain observed defoliation
patterns. The frequency distribution and the range of

the variogram of the spatial pattern of heather

defoliation were used to relate simulated to observed

patterns. In a qualitative comparison, the results

suggest that a foraging strategy used by a herbivore
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Fig. 13. Defoliation map resulting from animals foraging with different degrees of distance sensitivity: (a) low distance sensitivity and (b) high

distance sensitivity. Colours indicate amount of defoliation ranging from light (yellow) to heavy (red). The black lines indicate the perimeter of

the grass network in the heather matrix. The plot is 100 m � 100 m.
would be based on low determinism, high distance

exponent, low discriminative ability and high distance

sensitivity, while the landscape would have high

relative resistance. This translates as a low perceptual,

large scale foraging strategy, facilitated by a network

of low resistant vegetation in a highly resistant matrix.

However, a quantitative comparison was considered to

be inappropriate, as the model was parameterized in

order to investigate varying spatial patterns, rather

than to be quantitatively realistic. For example, no

validation was made to ensure that observed and

simulated patterns resulted from the same grazing

pressure.

Results suggest that intermediate levels of selec-

tivity and mobility lead to the best animal performance

in this artificial environment and result in a strong

correlation between the pattern of grass and the pattern

of heather defoliation. Furthermore, results show that

perception across several scales can contribute to

better performance by the animal. This is comple-

mentary to the argument of Illius and Gordon (1993),

that foraging decisions cannot be made on small scales

in time and space. To achieve a high quality diet,

animals have to be able to explore their environment.

Although, results suggest that highly perceptive
strategies can lead to different diets and patterns of

defoliation, differences in performance resulting from

these strategies remained small. This indicates that

resource heterogeneity, i.e. the complexity of the

landscape, has a strong effect on strategy performance.

This confirms earlier simulation studies in which

performance of strategies converged with decreased

abundance of the preferred food resource (Moen et al.,

1997; Turner et al., 1994).

Experiments with sheep have shown that the

animals can use spatial memory to locate previously

visited food patches (Edwards et al., 1996, 1997). It is

expected that strategies including some form of spatial

memory will do better in heterogeneous/complex

mosaics when the strategy allows for a more effective

exploration of the mosaic. However, results from this

simulation study suggest that the energy return of

spatial memory could be limited due to the complexity

of the landscape. High perceptual strategies were less

successful. Animals could optimize the energy return

of spatial memory by varying spatial resolution and

extent of the memory. Moderate perceptual strategies

might benefit from spatial memory at a low resolution

and a large extent. Thus, animals would be more

efficient in selecting better quality resource areas at a
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larger scale. The implementation of a memory sub

model, would provide insight in the role of experience

on foraging success in relation to temporal variability

of the resource (such as seasonality).

The spatial statistical analysis of the virtual

experiments showed three interesting phenomena.

Firstly, the model variograms generally showed a large

RNE, i.e. a large part of the variation in the vegetation

defoliation was not spatially correlated. This also

arose from the field observations of heather defolia-

tion, which showed high variation at small spatial

scales (Oom et al., 2002). The large RNE could

indicate that animals are using strategies similar to

biased random walks (Farnsworth and Beecham,

1999; Okubo, 1980) and take random decisions at

the smallest spatial scale and biased random deci-

sions at larger scales. On the other hand the effect

could be caused by the maximum fraction of available

biomass that can be consumed at once in a cell,

possibly linked to a fixed amount eaten by herbivores

per feeding station (Wallis de Vries et al., 1999).

Therefore, further investigation is needed to under-

stand the cause of the large RNE and possible

ecological relevance.

Secondly, the sample variograms of the observed

heather and simulated heather defoliation pattern,

showed a hole effect (Isaaks and Srivastava, 1989),

especially for across the hill contours. This hole effect

is caused by the directionality and regular spacing of

the underlying pattern of paths and patches. The

directionality in the vegetation pattern was caused by

the interaction between slope of the hill and the

defoliation and trampling impact by sheep. As sheep

prefer to follow the contours of a hill, paths generally

follow the contours (Hester et al., 1999; Oom and

Hester, 1999). Thus, the variance between points

decreases at the average distance between paths.

Thirdly, the results showed sample variograms

which increased up to the maximum lag distance. This

suggests that the mean vegetation defoliation of one

part of the vegetation mosaic is not equal to the mean

at another part of the mosaic. This can be avoided

by increasing the size of the simulated landscape

(assuming the landscape is homogeneous at larger

scales), or by increasing the length of the simulation.

The first option would lead to a stabilizing sample

variogram at a higher sill and longer range (encom-

passing the pattern and variance at larger scales),
while the latter would lead to a lower sill and range (a

longer simulation period would lead to a more

depleted environment with decreased contrast

between grazed and ungrazed vegetation). A non-

stationary mean suggests that the spatial pattern under

study is the result of at least two processes operating at

different spatial scales. To ensure a stationary mean,

the appropriate scale of observation has to be selected

carefully. It is, however, questionable whether com-

plex ecological systems have an ‘appropriate spatial

scale’. It is likely that any scale of observation is also

affected by processes working either below or above

the chosen scale.

In the virtual experiments we have tested the effect

of different levels of perceptive ability on foraging

performance and, in view of the results, we suggest

that high perceptual ability might not be an advantage

in complex, generally poor quality, vegetation

mosaics. However, through the foraging algorithm

we have forced the animals to use a rigid foraging

strategy with varying availability of information. It is

likely that animals will use different foraging

strategies depending on the information available to

them and the scale at which the strategy is applied

(Illius and Gordon, 1993). Results in this paper show

that the cost of lost opportunities increases with

distance travelled, reducing the performance of highly

cognitive foraging strategies. Therefore, animals are

expected to develop cognition primarily for long-

range foraging decisions for instance by using spatial

memory. This is in line with results presented by Illius

and Gordon (1993), which show that sheep use a non-

cognitive foraging strategy at a small scale and use

collected information about the food resource at larger

scales. The use of multiple strategies at different scales

needs further investigation.

The biological implications of the presented results

concern the evolution of cognition in foraging

animals. Although, Hutchinson did not consider

cognition when developing the niche concept (Hutch-

inson, 1959), the results presented here and in

Beecham (2001) suggest that cognition could play a

role in the formation of ecological niches. Provided

that cognition can secure a competitive advantage,

animals are expected to develop cognitive strategies,

which could lead to a ‘cognitive niche’ (Beecham,

2001). Using the HOOFS model, Beecham (2001)

shows that competition can lead to the evolution
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of a cognitive niche. The cognitive niche exists

when the accessibility of the landscape for the

competitor is limited by the accessibility of knowl-

edge about that landscape (Beecham, 2001). This

insight in the relationship between heterogeneity and

evolution will ultimately bring us closer to under-

standing the interaction between heterogeneity and

biodiversity.

Although, it has been suggested that animals strive

towards intake rate maximization (Illius and Gordon,

1993; Newman et al., 1995), it is debatable whether

animals pursue optimal foraging (see review Perry and

Pianka, 1997). It is more likely that animals develop

the skills necessary to survive, improving skills only

when pushed by the environment. More generally, in

complex adaptive systems it is not global optima that

describe the system, instead, through their behaviour,

individuals in the system strive to gain an edge over

their competitors (Holland, 1992). This study suggests

that foraging strategies could play an important part in

getting an edge over competitors.
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Appendix A. HOOFS foraging sub-model

The foraging sub-model contains the algorithms

concerned with the animals’ foraging strategy. The

motivation for the strategy is maximization of the

quality of the resource cells from which they forage.

Every time an animal is ready to forage it will go

through a number of decisions. Through these

decisions the animal will evaluate its environment,

decide the best place to forage and choose how to get

there. The decisions are summarized in a flow diagram

(Fig. A.1). Although, HOOFS has a social sub-model

(Beecham and Farnsworth, 1998; Farnsworth and

Beecham, 1999), this was switched off for the purpose
of this study. The model presented here is an extension

of the model presented by Farnsworth and Beecham

(1999). Input parameters and output variables are

summarized in Tables 2, A.1 and A.2.

The measure of vegetation quality is the potential

energy intake rate, which is determined by the

potential specific net energy of a cell and the cost

endured during a foraging bout. Firstly, the animal

gathers the information on the environment for

individual cells (Fig. A.1), step (1) and all super-

cells (2). Then the animal determines a directional bias

(3). After the animal has decided which direction to

select, the animal determines the best patch in that

direction (4) and determines whether to forage or walk

(5) in the direction of that patch. If the animal decides

to walk, the animal adjusts the direction in order to

take the path of least resistance (6).

A.1. Update of individual cells

The quality of the environment is measured as the

potential energy intake rate in each cell or super-cell.

The quality of the environment needs to be updated in

order to take into account offtake and vegetation

regrowth. Potential energy intake rate values for a cell

are updated after each grazing event or, if the cell

remains ungrazed, every 100 time steps. The potential

energy intake rate is determined by the digestibility of

the vegetation in a patch and the travel, search and

handling costs associated with the patch.

The digestibility is expressed as the potential specific

net energy (D; Eq. (A.1)). As herbivores graze down

vegetation, the proportion of dead stem increases,

leading to a decrease in the digestibility. Thus, the

digestibility decreases when biomass is reduced and

recovers with time since defoliation (Tdef). The

recovery curve is sigmoidal set by the speed of

recovery (Dslope) and the recovery delay (Tdelay). The

digestibility varies between the maximum (Dmax) and

minimum digestibility (Dmin) for that vegetation type.

D ¼ Dmax �
Dmax � Dmin

1 þ e�DslopeðTdef�TdelayÞ

� �
(A.1)

To determine the actual intake rate for a foraging

bout, the animal evaluates costs incurred during the

foraging bout. The costs considered are: maintenance

cost (Emaint), travel cost (Ttravel) and grazing cost

(Tgrazing). The travel cost and grazing cost are
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Fig. A.1. Flow diagram of the HOOFS foraging sub-model. Numbers refer to numbers explained in the text.
expressed as time penalties, while the maintenance

cost is expressed in energy. The grazing cost (Tgrazing;

Eq. (A.2)) is the time it takes to consume the biomass,

calculated as the biomass eaten (Beaten) divided by the

intake rate (rveg), in addition to a fixed handling cost

(Thandling; putting head down). The biomass eaten

(Beaten; Eq. (A.3)) is calculated as the difference

between the available biomass in the patch (B) and the

inaccessible biomass (below minimum sward height)

for that vegetation type (Binacc), multiplied by the

fraction of the biomass that can be consumed in one

foraging bout (Fbiomass). Note that the available

biomass of heather only comprises the current year’s

growth. The fraction of biomass available in each

foraging bout was introduced to limit the time animals

spent in any one cell, in particular in heather cells

which have a whole current year’s growth as initial
biomass. The travel cost (Eq. (A.4)) is the product of

the step cost (Tstep) and the mean relative resistance

(Rmean) of the vegetation types travelled through,

going from the current cell (a) to one of its

neighbours (b), Ra and Rb, respectively. The main-

tenance cost (Emaint) is the product of the travel cost

(Ttravel) and a fixed maintenance energy rate (Imaint)

(Eq. (A.5)). � �

Tgrazing ¼ Thandling þ

Beaten

rveg
(A.2)

B ¼ F � ðB � B Þ (A.3)
eaten biomass inacc

R þ R
� �
Ttravel ¼ Tstep þ a b

2
(A.4)

E ¼ T � I (A.5)
maint travel maint
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The final potential energy intake rate (I) is then

calculated, using the endured costs and the fraction

of the biomass that is indigestible (Eq. (A.6)).

I ¼ ðBeaten � DÞ � Emaint

Tgrazing þ Ttravel
(A.6)

A.2. Update of super-cell values

With the individual cell quality recalculated, the

super-cell values can now be updated (Eq. (A.7)) for

all higher levels in the hierarchy (h+1). The discri-

minative ability factor (g) determines how animals

perceive aggregation of cells across different levels.

A high discriminative ability leads to a bias towards

higher quality patches within a super-cell.

Ihþ1 ¼ 1

7

X7

h¼1
I
g
h

� �1=g

(A.7)

Note that the factor seven in the denominator is

replaced by a lower value for incomplete super-cells

at the edges of the environment. This is to cope with

the square vegetation map in a hexagonal hierarchy.

Without the correction, the mean patch value would be

higher at the edge of the map, leading to a bias towards

the edge. The value is set to induce a slight bias

towards the centre of the map.

A.3. Calculating the foraging bias

Now, the animal is ready to calculate its directional

foraging bias, i.e. the bias part of the biased random

walk. This is where the animal’s foraging strategy is

applied to its environment. The animal has six

directions to choose from and the directional bias will

provide a probability of selecting each direction. A

loaded dice will then be thrown taking into account the

calculated probabilities (pd; Eq. (A.8)) for each

direction (d).

pd ¼
P5

h¼0 7mh=2ðAhIdh þ ð1 � AhÞIðdþ1ÞhÞbP5
h¼0 7mh=2

P6
d¼1ðAhIdh þ ð1 � AhÞIðdþ1ÞhÞb

(A.8)

The foraging bias is calculated using the potential

energy intake rate (I) (Eq. (A.6)) of the neighbouring

individual cells and the super-cells at higher scales
(Eq. (A.8)) (Beecham et al., 1999). The bias is

influenced by the determinism (b) to select the best

possible potential energy intake rate and the distance

exponent (m). The distance exponent determines the

weighting of cells near and further away. When

distance exponent is zero, all distances are rated equal,

while a negative distance exponent leads to bias

towards cells closer by. Although, the bias is

calculated in the six directions (d and d) of the

neighbouring cells, due to the hexagonal hierarchical

system, the super-cells are not all aligned with these

directions. Therefore, a correction factor (A) is applied

to the six directions (d and d) for the six levels in the

hierarchy (h). For alternate levels the correction

factors are 1 and 0.682, respectively. This is illustrated

by the arrows in Fig. 1. Note that a previous

implementation of HOOFS used three correction

factors based on a different hierarchical ordering of

the hexagons (Fig. 1, Farnsworth and Beecham, 1999).

Finally, the directional probability (pd) is multi-

plied with the directional persistence (qf or qw) (Eq.

(A.9)). The directional persistency controls the

turning behaviour of the animal, making it more or

less persistent in maintaining its current direction

(compare with turn angle concentration; Bell, 1991).

The directional persistence is set separately for the

walking and foraging mode, to take into account

which mode the animal selected previously.

pd;adjusted ¼ pd � qf or pd;adjusted ¼ pd � qw (A.9)

A.4. Selecting the best patch in chosen direction

When the potential energy intake rate (I) of the

animal’s local environment is low compared to its

global environment, it is better for the animal to walk

instead of graze. The animal can avoid grazing costs in

any cells that it walks through. Therefore, the animal

should evaluate whether to walk or forage. It also has

to decide which patch to select in the chosen direction,

which depends on the way it evaluates distance and

resistance. The resistance is calculated cascading

through the hierarchy (Eq. (A.10)). The resistance at

scale h+1 is based on the resistance of cells at level h,

corrected by the resistance sensitivity (pr). The mean

resistance (Rmean) is calculated as the average

resistance for the total distance travelled. The

resistance sensitivity determines how animals per-
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ceive the resistance across scales.

Rhþ1 ¼ 1

7

X7

h¼1
R

pr

h

� �1=pr

(A.10)

Should the animal evaluate the step cost (Tstep) on

the basis of one cell in the distance or should it spread

the travel cost across a group of cells in the distance? If

the walk results in just a single cell consumed followed

by a walk back this would scale with distance. If more

cells are eaten with greater distance this scaling is less,

i.e. the cost of distance is spread across several cells

visited (and thus, less than when only a single cell is

visited), down to no scaling (0th power) when the

whole super cell is consumed before a further walk of

the same or greater magnitude is undertaken. The

animal is therefore provided with a distance sensitivity

(pd). If the power is high the animal thinks that it is

worthwhile to walk off into the distance, i.e. it assumes

the grass is greener elsewhere.

For all super-cell levels, the value of the potential

energy intake rate (Iforaging) is obtained. This value is

corrected with the walking cost (Ewalking) and the fixed

handling time (Thandling) (Eq. (A.11)). The walking

cost is based on maintenance energy rate (Imaint),

the step cost (Tstep), the mean resistance (Rmean), the

distance between the current animal location and the

destination cell (Dist) and the distance sensitivity (pd)

(Eq. (A.12)). Leading to the corrected potential energy

intake rate (IDist). Note that only a single path, ‘as the

crow flies’, is evaluated by the animal. This is not

necessarily the path of least resistance.

IDist ¼ Iforaging �
Ewalking

Thandling
(A.11)
Ewalking ¼ Imaint � Tstep � Rmean � ðDistpd Þ (A.12)

A.5. Checking for walking or foraging mode

To simulate indecisiveness in the foraging beha-

viour, the potential energy intake rate is then adjusted

by the mode error (ew) (Eq. (A.13)). The mode error is

taken from a uniform distribution between minimum

and maximum mode error. A uniform distribution was

chosen because this was the least computationally

demanding. The animal then evaluates whether to

forage or walk depending on the highest value, i.e. if
the neighbouring cell is better than any distant cell

it will forage and vice versa. If the animal decides

to forage it will now make the necessary steps. If

the animal decided a random direction, it will still

be biased in the decision to walk or forage. Because,

it chose a random direction, it is more likely to

walk, as it is likely to be oriented in a less optimal

direction.

Iwalk ¼ IDist � ew (A.13)

A.6. Choosing walking direction

If the animal decides to walk, the walking direction

is adjusted to facilitate the animal to follow paths.

For the chosen destination cell value, three paths are

evaluated. This is done by calculating the two

alternative paths relative to the optimal path, taking

one initial step to the left or to the right. The

destination cell value is calculated as before. The two

alternatives are then multiplied by allow turn (et)

(Eq. (A.14)), thus allowing the animal to either go left

or right relative to the optimal direction in order to

avoid high travel costs. The animal then chooses the

highest of the three values and takes one step in that

direction. A possible correction for slope could also be

implemented at this stage. This was, however, beyond

the scope of this study.

Ipath ¼ IDist � et (A.14)
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